MathDB
Problems
Contests
Undergraduate contests
Jozsef Wildt International Math Competition
2019 Jozsef Wildt International Math Competition
W. 46
Prove this trigonometric inequality
Prove this trigonometric inequality
Source: 2019 Jozsef Wildt International Math Competition
May 19, 2020
inequalities
trigonometry
Problem Statement
Let
x
x
x
,
y
y
y
,
z
>
0
z > 0
z
>
0
such that
x
2
+
y
2
+
z
2
=
3
x^2 + y^2 + z^2 = 3
x
2
+
y
2
+
z
2
=
3
. Then
x
3
tan
−
1
1
x
+
y
3
tan
−
1
1
y
+
z
3
tan
−
1
1
z
<
π
3
2
x^3\tan^{-1}\frac{1}{x}+y^3\tan^{-1}\frac{1}{y}+z^3\tan^{-1}\frac{1}{z}<\frac{\pi \sqrt{3}}{2}
x
3
tan
−
1
x
1
+
y
3
tan
−
1
y
1
+
z
3
tan
−
1
z
1
<
2
π
3
Back to Problems
View on AoPS