MathDB
Ant

Source: Iranian National Olympiad (3rd Round) 2002

October 13, 2006
geometry3D geometrycombinatorics proposedcombinatorics

Problem Statement

An ant walks on the interior surface of a cube, he moves on a straight line. If ant reaches to an edge the he moves on a straight line on cube's net. Also if he reaches to a vertex he will return his path. a) Prove that for each beginning point ant can has infinitely many choices for his direction that its path becomes periodic. b) Prove that if if the ant starts from point AA and its path is periodic, then for each point BB if ant starts with this direction, then his path becomes periodic.