MathDB
Inequality with Sum of Squares

Source: Germany TST 2012 P3

April 13, 2020
inequalities

Problem Statement

Let a,b,ca,b,c be positive real numbers with a2+b2+c23a^2+b^2+c^2 \geq 3. Prove that: (a+1)(b+2)(b+1)(b+5)+(b+1)(c+2)(c+1)(c+5)+(c+1)(a+2)(a+1)(a+5)32.\frac{(a+1)(b+2)}{(b+1)(b+5)}+\frac{(b+1)(c+2)}{(c+1)(c+5)}+\frac{(c+1)(a+2)}{(a+1)(a+5)} \geq \frac{3}{2}.