MathDB
Prove that there exists 3 integers satisfying the conditions

Source: India tst 2006 p11

June 27, 2012
modular arithmeticgeometry3D geometryanalytic geometrypigeonhole principlenumber theory unsolvednumber theory

Problem Statement

Let ujku_{jk} be a real number for each j=1,2,3j=1,2,3 and each k=1,2k=1,2 and let NN be an integer such that max1k2j=13ujkN\max_{1\le k \le 2} \sum_{j=1}^3 |u_{jk}| \leq N Let MM and ll be positive integers such that l2<(M+1)3l^2 <(M+1)^3. Prove that there exist integers ξ1,ξ2,ξ3\xi_1,\xi_2,\xi_3 not all zero, such that max1j3ξjM    and   j=13ujkξkMNl    for k=1,2\max_{1\le j \le 3}\xi_j \le M\ \ \ \ \text{and} \ \ \ \left|\sum_{j=1}^3 u_{jk}\xi_k\right| \le \frac{MN}{l} \ \ \ \ \text{for k=1,2}