MathDB
Putnam 1947 B1

Source: Putnam 1947

April 3, 2022
Putnamfunctiontrigonometry

Problem Statement

Let f(x)f(x) be a function such that f(1)=1f(1)=1 and for x1x \geq 1 f(x)=1x2+f(x)2.f'(x)= \frac{1}{x^2 +f(x)^{2}}. Prove that limxf(x)\lim_{x\to \infty} f(x) exists and is less than 1+π4.1+ \frac{\pi}{4}.