MathDB
Circle Through Incenter and Orthocenter

Source:

August 8, 2024
geometryincentercircumcircle2022

Problem Statement

In JMT\triangle JMT, JM=410JM=410, JT=49JT=49, and MJT>90\angle{MJT}>90^\circ. Let II and HH be the incenter and orthocenter of JMT\triangle JMT, respectively. The circumcircle of JIH\triangle JIH intersects JT\overleftrightarrow{JT} at a point PJP\neq J, and IH=HPIH=HP. Find MTMT.