MathDB
2018 PUMaC Algebra A4

Source:

November 25, 2018
PuMACalgebra

Problem Statement

Suppose real numbers a,b,c,da, b, c, d satisfy a+b+c+d=17a + b + c + d = 17 and ab+bc+cd+da=46ab + bc + cd + da = 46. If the minimum possible value of a2+b2+c2+d2a^2 + b^2 + c^2 + d^2 can be expressed as a rational number pq\frac{p}{q} in simplest form, find p+qp + q.