MathDB
1982 USAMO #3

Source:

August 16, 2011
AMCUSA(J)MOUSAMOgeometryperimeterfunctiontrigonometry

Problem Statement

If a point A1A_1 is in the interior of an equilateral triangle ABCABC and point A2A_2 is in the interior of A1BC\triangle{A_1BC}, prove that I.Q.(A1BC)>I.Q.(A2BC),\operatorname{I.Q.} (A_1BC) > \operatorname{I.Q.} (A_2BC), where the isoperrimetric quotient of a figure FF is defined by I.Q.(F)=Area(F)[Perimeter(F)]2.\operatorname{I.Q.}(F) = \frac{\operatorname{Area}(F)}{[\operatorname{Perimeter}(F)]^2}.