MathDB
Romania District Olympiad 2001 - Grade XI

Source:

March 16, 2011
linear algebramatrixlinear algebra unsolved

Problem Statement

Let nN, n2n\in \mathbb{N},\ n\ge 2. For any matrix AMn(C)A\in \mathcal{M}_n(\mathbb{C}), let m(A)m(A) be the number of non-zero minors of AA. Prove that:
a)m(In)=2n1m(I_n)=2^n-1; b)If AMn(C)A\in \mathcal{M}_n(\mathbb{C}) is non-singular, then m(A)2n1m(A)\ge 2^n-1.
Marius Ghergu