MathDB
Problems
Contests
National and Regional Contests
India Contests
Regional Mathematical Olympiad
2016 India Regional Mathematical Olympiad
3
Number Theory
Number Theory
Source: RMO 2016 Karnataka Region P3
October 16, 2016
number theory
Problem Statement
Let
a
,
b
,
c
,
d
,
e
,
d
,
e
,
f
a,b,c,d,e,d,e,f
a
,
b
,
c
,
d
,
e
,
d
,
e
,
f
be positive integers such that
a
b
<
c
d
<
e
f
\dfrac a b < \dfrac c d < \dfrac e f
b
a
<
d
c
<
f
e
. Suppose
a
f
−
b
e
=
−
1
af-be=-1
a
f
−
b
e
=
−
1
. Show that
d
≥
b
+
f
d \geq b+f
d
≥
b
+
f
.
Back to Problems
View on AoPS