MathDB
Problems
Contests
Undergraduate contests
SEEMOUS
2024 SEEMOUS
P3
Limits concerning an integral sequence
Limits concerning an integral sequence
Source: SEEMOUS 2024, Problem 3
April 16, 2024
calculus
integration
Problem Statement
For every
n
≥
1
n\geq 1
n
≥
1
define
x
n
x_n
x
n
by
x
n
=
∫
0
1
ln
(
1
+
x
+
x
2
+
⋯
+
x
n
)
⋅
ln
1
1
−
x
d
x
.
x_n=\int_0^1 \ln(1+x+x^2+\dots +x^n)\cdot\ln\frac{1}{1-x}\mathrm dx.
x
n
=
∫
0
1
ln
(
1
+
x
+
x
2
+
⋯
+
x
n
)
⋅
ln
1
−
x
1
d
x
.
a) Show that
x
n
x_n
x
n
is finite for every
n
≥
1
n\geq 1
n
≥
1
and
lim
n
→
∞
x
n
=
2
\lim_{n\rightarrow\infty}x_n=2
lim
n
→
∞
x
n
=
2
. b) Calculate
lim
n
→
∞
n
ln
n
(
2
−
x
n
)
\lim_{n\rightarrow\infty}\frac{n}{\ln n}(2-x_n)
lim
n
→
∞
l
n
n
n
(
2
−
x
n
)
.
Back to Problems
View on AoPS