MathDB
Limits concerning an integral sequence

Source: SEEMOUS 2024, Problem 3

April 16, 2024
calculusintegration

Problem Statement

For every n1n\geq 1 define xnx_n by xn=01ln(1+x+x2++xn)ln11xdx.x_n=\int_0^1 \ln(1+x+x^2+\dots +x^n)\cdot\ln\frac{1}{1-x}\mathrm dx. a) Show that xnx_n is finite for every n1n\geq 1 and limnxn=2\lim_{n\rightarrow\infty}x_n=2. b) Calculate limnnlnn(2xn)\lim_{n\rightarrow\infty}\frac{n}{\ln n}(2-x_n).