MathDB
Imaginary i

Source: 1964 AHSME Problem 34

August 26, 2013
AMC

Problem Statement

If nn is a multiple of 44, the sum s=1+2i+3i2+...+(n+1)ins=1+2i+3i^2+ ... +(n+1)i^{n}, where i=1i=\sqrt{-1}, equals:
<spanclass=latexbold>(A)</span> 1+i<spanclass=latexbold>(B)</span> 12(n+2)<spanclass=latexbold>(C)</span> 12(n+2ni) <span class='latex-bold'>(A)</span>\ 1+i\qquad<span class='latex-bold'>(B)</span>\ \frac{1}{2}(n+2) \qquad<span class='latex-bold'>(C)</span>\ \frac{1}{2}(n+2-ni) \qquad
<spanclass=latexbold>(D)</span> 12[(n+1)(1i)+2]<spanclass=latexbold>(E)</span> 18(n2+84ni) <span class='latex-bold'>(D)</span>\ \frac{1}{2}[(n+1)(1-i)+2]\qquad<span class='latex-bold'>(E)</span>\ \frac{1}{8}(n^2+8-4ni)