MathDB
Romania District MO 2022 Grade 12 P1

Source: Romania District MO 2022 Grade 12

March 27, 2022
romaniamonoidcollege contests

Problem Statement

Let ee be the identity of monoid (M,)(M,\cdot) and aMa\in M an invertible element. Prove that
[*]The set Ma:={xM:ax2a=e}M_a:=\{x\in M:ax^2a=e\} is nonempty; [*]If bMab\in M_a is invertible, then b1Mab^{-1}\in M_a if and only if a4=ea^4=e; [*]If (Ma,)(M_a,\cdot) is a monoid, then x2=ex^2=e for all xMa.x\in M_a.
Mathematical Gazette