MathDB
integer valued functions with at most two values for f(2022)

Source: Macedonian TST 2022, P3

May 21, 2022
algebrafunctionfunctional equation

Problem Statement

We consider all functions f:NNf: \mathbb{N} \rightarrow \mathbb{N} such that f(f(n)+n)=nf(f(n)+n)=n and f(a+b1)f(a)+f(b)f(a+b-1) \leq f(a)+f(b) for all positive integers a,b,na, b, n. Prove that there are at most two values for f(2022)f(2022).
Proposed by Ilija Jovcheski\textit {Proposed by Ilija Jovcheski}