MathDB
Shortlist 2017/A8

Source:

July 10, 2018
algebrafunctionIMO Shortlist

Problem Statement

A function f:RRf:\mathbb{R} \to \mathbb{R} has the following property: For every x,yR such that (f(x)+y)(f(y)+x)>0, we have f(x)+y=f(y)+x.\text{For every } x,y \in \mathbb{R} \text{ such that }(f(x)+y)(f(y)+x) > 0, \text{ we have } f(x)+y = f(y)+x. Prove that f(x)+yf(y)+xf(x)+y \leq f(y)+x whenever x>yx>y.