MathDB
The Path of Point O'

Source:

June 8, 2009

Problem Statement

In circle O O, G G is a moving point on diameter AB \overline{AB}. AA \overline{AA'} is drawn perpendicular to AB \overline{AB} and equal to AG \overline{AG}. BB \overline{BB'} is drawn perpendicular to AB \overline{AB}, on the same side of diameter AB \overline{AB} as AA \overline{AA'}, and equal to BG BG. Let O O' be the midpoint of AB \overline{A'B'}. Then, as G G moves from A A to B B, point O O': <spanclass=latexbold>(A)</span> moves on a straight line parallel to AB<spanclass=latexbold>(B)</span> remains stationary<spanclass=latexbold>(C)</span> moves on a straight line perpendicular to AB<spanclass=latexbold>(D)</span> moves in a small circle intersecting the given circle<spanclass=latexbold>(E)</span> follows a path which is neither a circle nor a straight line <span class='latex-bold'>(A)</span>\ \text{moves on a straight line parallel to }{AB}\qquad \\ <span class='latex-bold'>(B)</span>\ \text{remains stationary}\qquad \\ <span class='latex-bold'>(C)</span>\ \text{moves on a straight line perpendicular to }{AB}\qquad \\ <span class='latex-bold'>(D)</span>\ \text{moves in a small circle intersecting the given circle}\qquad \\ <span class='latex-bold'>(E)</span>\ \text{follows a path which is neither a circle nor a straight line}