MathDB
a,b,c just isn't cool enough

Source: Romanian MO 2002

December 8, 2010
functionalgebra proposedalgebra

Problem Statement

Given real numbers a,c,da,c,d show that there exists at most one function f:R→Rf:\mathbb{R}\rightarrow\mathbb{R} which satisfies: f(ax+c)+d\le x\le f(x+d)+c \text{for any}\ x\in\mathbb{R}