MathDB
Miklós Schweitzer 1953- Problem 1

Source: Miklós Schweitzer 1953- Problem 1

August 1, 2015
Sequences

Problem Statement

1. Let ava_{v} and bvb_{v} , v=1,2,,n{v= 1,2,\dots,n} , be real numbers such that a1a2a3an>0a_{1}\geq a_{2} \geq a_{3}\geq\dots\geq a_{n}> 0 and b1a1,b1b2a1a2,,b1b2bna1a2anb_{1}\geq a_{1}, b_{1}b_{2}\geq a_{1}a_{2},\dots,b_{1}b_{2}\dots b_{n}\geq a_{1}a_{2}\dots a_{n}
Show that b1+b2++bna1+a2++anb_{1}+b_{2}+\dots+b_{n}\geq a_{1}+a_{2}+\dots+a_{n} (S. 4)