MathDB
Problems
Contests
Undergraduate contests
Miklós Schweitzer
1953 Miklós Schweitzer
1
Miklós Schweitzer 1953- Problem 1
Miklós Schweitzer 1953- Problem 1
Source: Miklós Schweitzer 1953- Problem 1
August 1, 2015
Sequences
Problem Statement
1. Let
a
v
a_{v}
a
v
and
b
v
b_{v}
b
v
,
v
=
1
,
2
,
…
,
n
{v= 1,2,\dots,n}
v
=
1
,
2
,
…
,
n
, be real numbers such that
a
1
≥
a
2
≥
a
3
≥
⋯
≥
a
n
>
0
a_{1}\geq a_{2} \geq a_{3}\geq\dots\geq a_{n}> 0
a
1
≥
a
2
≥
a
3
≥
⋯
≥
a
n
>
0
and
b
1
≥
a
1
,
b
1
b
2
≥
a
1
a
2
,
…
,
b
1
b
2
…
b
n
≥
a
1
a
2
…
a
n
b_{1}\geq a_{1}, b_{1}b_{2}\geq a_{1}a_{2},\dots,b_{1}b_{2}\dots b_{n}\geq a_{1}a_{2}\dots a_{n}
b
1
≥
a
1
,
b
1
b
2
≥
a
1
a
2
,
…
,
b
1
b
2
…
b
n
≥
a
1
a
2
…
a
n
Show that
b
1
+
b
2
+
⋯
+
b
n
≥
a
1
+
a
2
+
⋯
+
a
n
b_{1}+b_{2}+\dots+b_{n}\geq a_{1}+a_{2}+\dots+a_{n}
b
1
+
b
2
+
⋯
+
b
n
≥
a
1
+
a
2
+
⋯
+
a
n
(S. 4)
Back to Problems
View on AoPS