MathDB
"Triple-ratios" are also projectively invariant

Source: 5th QEDMO problem 8, proposed by me but apparently known before

November 10, 2007
invariantratiogeometry theoremsgeometry

Problem Statement

Let A A, B B, C C, A A^{\prime}, B B^{\prime}, C C^{\prime}, X X, Y Y, Z Z, X X^{\prime}, Y Y^{\prime}, Z Z^{\prime} and P P be pairwise distinct points in space such that ABC; BCA; CAB; XYZ; YZX; ZXY; A^{\prime} \in BC;\ B^{\prime}\in CA;\ C^{\prime}\in AB;\ X^{\prime}\in YZ;\ Y^{\prime}\in ZX;\ Z^{\prime}\in XY; PAX; PBY; PCZ; PAX; PBY; PCZ P \in AX;\ P\in BY;\ P\in CZ;\ P\in A^{\prime}X^{\prime};\ P\in B^{\prime}Y^{\prime};\ P\in C^{\prime}Z^{\prime}. Prove that \frac {BA^{\prime}}{A^{\prime}C}\cdot\frac {CB^{\prime}}{B^{\prime}A}\cdot\frac {AC^{\prime}}{C^{\prime}B} \equal{} \frac {YX^{\prime}}{X^{\prime}Z}\cdot\frac {ZY^{\prime}}{Y^{\prime}X}\cdot\frac {XZ^{\prime}}{Z^{\prime}Y}.