Let n≥5 be a positive integer. a1,b1,a2,b2,…,an,bn are integers. (ai,bi) are pairwisely distinct for i=1,2,…,n, and ∣a1b2−a2b1∣=∣a2b3−a3b2∣=⋯=∣an−1bn−anbn−1∣=1. Prove that there exists a pair of indexes i,j satisfying 2≤∣i−j∣≤n−2 and ∣aibj−ajbi∣=1.