MathDB
There exists a pair of indexes - ILL 1990 KOR1

Source:

September 18, 2010
algebra proposedalgebra

Problem Statement

Let n5n \geq 5 be a positive integer. a1,b1,a2,b2,,an,bna_1, b_1, a_2, b_2, \ldots, a_n, b_n are integers. (ai,bi)( a_i, b_i) are pairwisely distinct for i=1,2,,ni = 1, 2, \ldots, n, and a1b2a2b1=a2b3a3b2==an1bnanbn1=1|a_1b_2 - a_2b_1| = |a_2b_3 -a_3b_2| = \cdots = |a_{n-1}b_n -a_nb_{n-1}| = 1. Prove that there exists a pair of indexes i,ji, j satisfying 2ijn22 \leq |i - j| \leq n - 2 and aibjajbi=1.|a_ib_j -a_jb_i| = 1.