MathDB
Problems
Contests
National and Regional Contests
Russia Contests
Soros Olympiad in Mathematics
I Soros Olympiad 1994-95 (Rus + Ukr)
11.7
sin^3 x+sin^4 y=1, cos^4 x+cos^5 y =1 (I Soros Olympiad 1994-99 Round 2 11.7)
sin^3 x+sin^4 y=1, cos^4 x+cos^5 y =1 (I Soros Olympiad 1994-99 Round 2 11.7)
Source:
May 26, 2024
algebra
system of equations
trigonometry
Problem Statement
Solve the system of equations
{
sin
3
x
+
sin
4
y
=
1
cos
4
x
+
cos
5
y
=
1
\begin{cases} \sin^3 x+\sin^4 y=1 \\ \cos^4 x+\cos^5 y =1\end{cases}
{
sin
3
x
+
sin
4
y
=
1
cos
4
x
+
cos
5
y
=
1
Back to Problems
View on AoPS