MathDB
Equation.

Source: Greece National Olympiad 2000 , tst , Problem 3.

November 19, 2005
algebra proposedalgebra

Problem Statement

Let c1,c2,,cn,b1,b2,,bnc_1,c_2,\ldots ,c_n,b_1,b_2,\ldots ,b_n (n2)(n\geq 2) be positive real numbers. Prove that the equation i=1ncixibi=12i=1nxi \sum_{i=1}^nc_i\sqrt{x_i-b_i}=\frac{1}{2}\sum_{i=1}^nx_i has a unique solution (x1,,xn)(x_1,\ldots ,x_n) if and only if i=1nci2=i=1nbi\sum_{i=1}^nc_i^2=\sum_{i=1}^nb_i.