MathDB
Integrand of recurrent type (1+x)^r.ln^s x

Source: Romanian District Olympiad 2002, Grade XII, Problem 3

October 7, 2018
logarithmscalculusintegrationreal analysis

Problem Statement

a) Calculate limn0αln(1+x+x2++xn1)dx, \lim_{n\to\infty} \int_0^{\alpha } \ln \left( 1+x+x^2+\cdots +x^{n-1} \right) dx , for all α(0,1). \alpha\in (0,1) .
b) Calculate limn01ln(1+x+x2++xn1)dx. \lim_{n\to\infty} \int_0^{1 } \ln \left( 1+x+x^2+\cdots +x^{n-1} \right) dx .