MathDB
Sum of squares vs the sum squared

Source: Poland Math Olympiad 1992 Round 1 #9

June 2, 2023
inequalities

Problem Statement

Prove that for all real numbers a,b,ca,b,c the inequality (a2+b2c2)(b2+c2a2)(c2+a2b2)(a+bc)2(b+ca)2(c+ab)2(a^2+b^2-c^2)(b^2+c^2-a^2)(c^2+a^2-b^2) \leq (a+b-c)^2(b+c-a)^2(c+a-b)^2 holds.