MathDB
Prove that c_n = 0 implies n = 0

Source: IMO Shortlist 1989, Problem 9, ILL 22

September 18, 2008
algebrairrational numbernumber theoryIMO Shortlistequation

Problem Statement

n>0,nZ, \forall n > 0, n \in \mathbb{Z}, there exists uniquely determined integers an,bn,cnZ a_n, b_n, c_n \in \mathbb{Z} such \left(1 \plus{} 4 \cdot \sqrt[3]{2} \minus{} 4 \cdot \sqrt[3]{4} \right)^n \equal{} a_n \plus{} b_n \cdot \sqrt[3]{2} \plus{} c_n \cdot \sqrt[3]{4}. Prove that c_n \equal{} 0 implies n \equal{} 0.