Source: 2019 Jozsef Wildt International Math Competition
May 20, 2020
Summationinequalities
Problem Statement
If bk≥ak≥0(k=1,2,3) and α≥1 then(α+3)cyc∑(b1−a1)((b2+b3)α+2+(a2+a3)α+2−(a2+b3)α+1−(b2+a3)α+1)≤(α+2)(α+3)cyc∑(b1−a1)(b2−a2)(b3α+1−a3α+1)+(b3+b2+a1)α+3+(b3+a2+a1)α+3+(a3+b2+a1)α+3+(a3+a2+b1)α+3−(b3+b2+b1)α+3−(b3+a2+a1)α+3−(a3+b2+b1)α+3−(a3+a2+a1)α+3