MathDB
a^2 + b^4 = 5^n

Source: 0

April 28, 2009

Problem Statement

If a,b,n a,b,n are positive integers, number of solutions of the equaition a^2 \plus{} b^4 \equal{} 5^n is
<spanclass=latexbold>(A)</span> 1<spanclass=latexbold>(B)</span> 2<spanclass=latexbold>(C)</span> 3<spanclass=latexbold>(D)</span> 4<spanclass=latexbold>(E)</span> Infinitely many<span class='latex-bold'>(A)</span>\ 1 \qquad<span class='latex-bold'>(B)</span>\ 2 \qquad<span class='latex-bold'>(C)</span>\ 3 \qquad<span class='latex-bold'>(D)</span>\ 4 \qquad<span class='latex-bold'>(E)</span>\ \text{Infinitely many}