MathDB
primitivableness on contest

Source: Romanian District Olympiad 2000, Grade XII, Problem 3

September 25, 2018
functionwilkoszprimitivesreal analysiscontestsromania

Problem Statement

Let be a function f:RR f:\mathbb{R}\longrightarrow\mathbb{R} such that: \text{(i)}  f(0)=0 \text{(ii)}  f'(x)\neq 0, \forall x\in\mathbb{R} \text{(iii)}  \left. f''\right|_{\mathbb{R}}\text{ exists and it's continuous}
Demonstrate that the function g:RR g:\mathbb{R}\longrightarrow\mathbb{R} defined as g(x)={cos1f(x),emsp;x00,emsp;x=0 g(x)=\left\{\begin{matrix}\cos\frac{1}{f(x)},  x\neq 0\\ 0,  x=0\end{matrix}\right. is primitivable.