primitivableness on contest
Source: Romanian District Olympiad 2000, Grade XII, Problem 3
September 25, 2018
functionwilkoszprimitivesreal analysiscontestsromania
Problem Statement
Let be a function such that:
\text{(i)} f(0)=0
\text{(ii)} f'(x)\neq 0, \forall x\in\mathbb{R}
\text{(iii)} \left. f''\right|_{\mathbb{R}}\text{ exists and it's continuous} Demonstrate that the function defined as
is primitivable.