MathDB
Romania District Olympiad 2002 - Grade XI

Source:

March 18, 2011
functionreal analysisreal analysis unsolved

Problem Statement

Consider a function f:RRf:\mathbb{R}\rightarrow \mathbb{R} such that:
1. ff has one-side limits in any aRa\in \mathbb{R} and f(a0)f(a)f(a+0)f(a-0)\le f(a)\le f(a+0).
2. for any a,bR, a<ba,b\in \mathbb{R},\ a<b, we have f(a0)<f(b0)f(a-0)<f(b-0).
Prove that ff is strictly increasing.
Mihai Piticari & Sorin Radulescu