Let a1,a2,…,an be non-negative real numbers. Define M to be the sum of all products of pairs aiaj(i<j), <spanclass=′latex−italic′>i.e.</span>, M=a1(a2+a3+⋯+an)+a2(a3+a4+⋯+an)+⋯+an−1an. Prove that the square of at least one of the numbers a1,a2,…,an does not exceed 2M/n(n−1).