MathDB
Today's calculation of Integral 668

Source:

January 21, 2011
calculusintegrationtrigonometrygeometrygeometric transformationrotationcalculus computations

Problem Statement

Consider two curves y=sinx, y=sin2xy=\sin x,\ y=\sin 2x in 0x2π0\leq x\leq 2\pi.
(1) Let (α, β) (0<α<π)(\alpha ,\ \beta)\ (0<\alpha <\pi) be the intersection point of the curves. If sinxsin2x\sin x-\sin 2x has a local minimum at x=x1x=x_1 and a local maximum at x=x2x=x_2, then find the values of cosx1, cosx1cosx2\cos x_1,\ \cos x_1\cos x_2.
(2) Find the area enclosed by the curves, then find the volume of the part generated by a rotation of the part of αxπ\alpha \leq x\leq \pi for the figure about the line y=1y=-1.
2011 Kyorin University entrance exam/Medicine