MathDB
existence of bijective function

Source: Indonesia IMO 2010 TST, Stage 1, Test 5, Problem 3

November 12, 2009
functioninductionnumber theory proposednumber theory

Problem Statement

Let Z \mathbb{Z} be the set of all integers. Define the set H \mathbb{H} as follows: (1). 12H \dfrac{1}{2} \in \mathbb{H}, (2). if xH x \in \mathbb{H}, then \dfrac{1}{1\plus{}x} \in \mathbb{H} and also \dfrac{x}{1\plus{}x} \in \mathbb{H}. Prove that there exists a bijective function f:ZH f: \mathbb{Z} \rightarrow \mathbb{H}.