MathDB
Sequence

Source:

January 11, 2009
quadratics

Problem Statement

Given the sequence 10111,10211,10311,,10n11 10^{\frac {1}{11}},10^{\frac {2}{11}},10^{\frac {3}{11}},\ldots,10^{\frac {n}{11}}, the smallest value of n n such that the product of the first n n members of this sequence exceeds 100000 100000 is: <spanclass=latexbold>(A)</span> 7<spanclass=latexbold>(B)</span> 8<spanclass=latexbold>(C)</span> 9<spanclass=latexbold>(D)</span> 10<spanclass=latexbold>(E)</span> 11 <span class='latex-bold'>(A)</span>\ 7 \qquad <span class='latex-bold'>(B)</span>\ 8 \qquad <span class='latex-bold'>(C)</span>\ 9 \qquad <span class='latex-bold'>(D)</span>\ 10 \qquad <span class='latex-bold'>(E)</span>\ 11