MathDB
f(x)=x forall x ∈ [0, 1]

Source:

August 29, 2010
functioninductionalgebra proposedalgebra

Problem Statement

Let f:[0,1][0,1]f : [0, 1] \to [0, 1] satisfy f(0)=0,f(1)=1f(0) = 0, f(1) = 1 and f(x+y)f(x)=f(x)f(xy)f(x + y) - f(x) = f(x) - f(x - y) for all x,y0x, y \geq 0 with xy,x+y[0,1].x - y, x + y \in [0, 1]. Prove that f(x)=xf(x) = x for all x[0,1].x \in [0, 1].