MathDB
Large subset of pairs satisfying a divisibility condition

Source: Korea National 2012 Problem 8

August 19, 2012
modular arithmeticpigeonhole principlecombinatorics proposedcombinatorics

Problem Statement

Let p3(mod4) p \equiv 3 \pmod{4} be a prime. Define T={(i,j)i,j{0,1,,p1}}{(0,0)}T = \{ (i,j) \mid i, j \in \{ 0, 1, \cdots , p-1 \} \} \smallsetminus \{ (0,0) \} . For arbitrary subset S()T S ( \ne \emptyset ) \subset T , prove that there exist subset AS A \subset S satisfying following conditions: (a) (xi,yi)A(1i3) (x_i , y_i ) \in A ( 1 \le i \le 3) then p∤x1+x2y3 p \not | x_1 + x_2 - y_3 or p∤y1+y2+x3 p \not | y_1 + y_2 + x_3 . (b) 8n(A)>n(S) 8 n(A) > n(S)