MathDB
Problems
Contests
National and Regional Contests
Moldova Contests
Moldova Team Selection Test
2016 Moldova Team Selection Test
10
Ez Pascal and Polars
Ez Pascal and Polars
Source: MDA TST 2016, B9
March 26, 2019
one-liner
Problem Statement
Let
A
1
A
2
⋯
A
14
A_{1}A_{2} \cdots A_{14}
A
1
A
2
⋯
A
14
be a regular
14
−
14-
14
−
gon. Prove that
A
1
A
3
∩
A
5
A
11
∩
A
6
A
9
≠
∅
A_{1}A_{3}\cap A_{5}A_{11}\cap A_{6}A_{9}\ne \emptyset
A
1
A
3
∩
A
5
A
11
∩
A
6
A
9
=
∅
.
Back to Problems
View on AoPS