MathDB
classical - symmetrical with 3 variables

Source: Polish second round 2006

February 24, 2006
inequalitiesinequalities proposed

Problem Statement

Positive reals a,b,ca,b,c satisfy ab+bc+ca=abcab+bc+ca=abc. Prove that: a4+b4ab(a3+b3)+b4+c4bc(b3+c3)+c4+a4ca(c3+a3)1\frac{a^4+b^4}{ab(a^3+b^3)} + \frac{b^4+c^4}{bc(b^3+c^3)}+\frac{c^4+a^4}{ca(c^3+a^3)} \geq 1