MathDB
Putnam 1953 A4

Source: Putnam 1953

July 16, 2022
Putnamlogarithmstrigonometry

Problem Statement

From the identity \int_{0}^{\pi \slash 2} \log \sin 2x \, dx = \int_{0}^{\pi \slash 2} \log \sin x \, dx + \int_{0}^{\pi \slash 2} \log \cos x \, dx +\int_{0}^{\pi \slash 2} \log 2 \, dx, deduce the value of \int_{0}^{\pi \slash 2} \log \sin x \, dx.