MathDB
Groups and their subsets

Source: RMO 2007 - District Round - I

March 3, 2007
functionfloor functionsuperior algebrasuperior algebra unsolved

Problem Statement

For a group (G,)\left( G, \star \right) and A,BA, B two non-void subsets of GG, we define AB={ab:aA and bB}A \star B = \left\{ a \star b : a \in A \ \text{and}\ b \in B \right\}. (a) Prove that if nN,n3n \in \mathbb N, \, n \geq 3, then the group \left( \mathbb Z \slash n \mathbb Z,+\right) can be writen as \mathbb Z \slash n \mathbb Z = A+B, where A,BA, B are two non-void subsets of \mathbb Z \slash n \mathbb Z and A \neq \mathbb Z \slash n \mathbb Z, \, B \neq \mathbb Z \slash n \mathbb Z, \, \left| A \cap B \right| = 1. (b) If (G,)\left( G, \star \right) is a finite group, A,BA, B are two subsets of GG and aG(AB)a \in G \setminus \left( A \star B \right), then prove that function f:AGBf : A \to G \setminus B given by f(x)=x1af(x) = x^{-1}\star a is well-defined and injective. Deduce that if A+B>G|A|+|B| > |G|, then G=ABG = A \star B. [hide="Question."]Does the last result have a name?