MathDB
Find the smallest real number C

Source:

September 5, 2010
inductioninequalitiesinequalities unsolved

Problem Statement

Find, with proof, the smallest real number CC with the following property: For every infinite sequence {xi}\{x_i\} of positive real numbers such that x1+x2++xnxn+1x_1 + x_2 +\cdots + x_n \leq x_{n+1} for n=1,2,3,n = 1, 2, 3, \cdots, we have x1+x2++xnCx1+x2++xnnN.\sqrt{x_1}+\sqrt{x_2}+\cdots+\sqrt{x_n} \leq C \sqrt{x_1+x_2+\cdots+x_n} \qquad \forall n \in \mathbb N.