Source: Romania National Olympiad 2014, Grade X, Problem 2
March 2, 2019
function
Problem Statement
Let be a function f:N⟶N satisfying
(i)f(1)=1(ii)f(p)=1+f(p−1), for any prime p(iii)f(p1p2⋯pu)=f(p1)+f(p2)+⋯f(pu), for any natural number u and any primes p1,p2,…,pu.Show that 2f(n)≤n3≤3f(n), for any natural n≥2.