MathDB
Divergent reciprocals, with sum-set density zero

Source: 2020 CIIM P6

October 31, 2020
combinatoricsreal analysisalgebra

Problem Statement

For a set AA, we define A+A={a+b:a,b∈A}A + A = \{a + b: a, b \in A \}. Determine whether there exists a set AA of positive integers such that \sum_{a \in A} \frac{1}{a} = +\infty   \text{and}   \lim_{n \rightarrow +\infty} \frac{|(A+A) \cap \{1,2,\cdots,n \}|}{n}=0.
Google translated from [url=http://ciim.uan.edu.co/ciim-2020-pruebas-virtuales/pruebas-virtuales]http://ciim.uan.edu.co/ciim-2020-pruebas-virtuales/pruebas-virtuales