MathDB
Today's calculation of Integral 390

Source: 1991 Sophia University entrance exam

November 13, 2008
calculusintegrationalgebrapolynomialtrigonometrycalculus computations

Problem Statement

Find the polynomials f(x), g(x) f(x),\ g(x) such that: \frac{1}{\pi}\int_0^{\frac{1}{2}} \frac{tf'(t)\minus{}6g(t)}{\sqrt{1\minus{}t^2}}\ dt\equal{}f(x)\minus{}g(x)\plus{}x \frac{6}{\pi}\int_0^{\frac{1}{2}} \frac{8f(t)\minus{}5g'(t)}{\sqrt{1\minus{}t^2}}\ dt\equal{}2f(x)\minus{}3g(x)\minus{}x^2\plus{}2x.