Romanian National Olympiad 2018 - Grade 10 - problem 4
Source: Romania NMO - 2018
April 12, 2018
algebra
Problem Statement
Let n∈N≥2. For any real numbers a1,a2,...,an denote S0=1 and for 1≤k≤n denote
Sk=1≤i1<i2<...<ik≤n∑ai1ai2...aik
Find the number of n−tuples (a1,a2,...an) such that (Sn−Sn−2+Sn−4−...)2+(Sn−1−Sn−3+Sn−5−...)2=2nSn.