MathDB
p-addict

Source: 2016 AIME II #6

March 17, 2016
AMCAIMEAIME IIalgebrapolynomial

Problem Statement

For polynomial P(x)=113x+16x2P(x)=1-\frac{1}{3}x+\frac{1}{6}x^2, define Q(x)=P(x)P(x3)P(x5)P(x7)P(x9)=i=050aixi. Q(x) = P(x)P(x^3)P(x^5)P(x^7)P(x^9) = \sum\limits_{i=0}^{50}a_ix^i. Then i=050ai=mn\sum\limits_{i=0}^{50}|a_i|=\frac{m}{n}, where mm and nn are relatively prime positive integers. Find m+nm+n.