MathDB
P09 [Geometry] - Turkish NMO 1st Round - 2014

Source:

May 22, 2014
geometry

Problem Statement

Let DD be a point on side [BC][BC] of ABC\triangle ABC such that AB=3,CD=1|AB|=3, |CD|=1 and AC=BD=5|AC|=|BD|=\sqrt{5}. If the BB-altitude of ABC\triangle ABC meets ADAD at EE, what is CE|CE|?
<spanclass=latexbold>(A)</span> 25<spanclass=latexbold>(B)</span> 1<spanclass=latexbold>(C)</span> 23<spanclass=latexbold>(D)</span> 52<spanclass=latexbold>(E)</span> 32 <span class='latex-bold'>(A)</span>\ \dfrac{2}{\sqrt{5}} \qquad<span class='latex-bold'>(B)</span>\ 1 \qquad<span class='latex-bold'>(C)</span>\ \dfrac{2}{\sqrt{3}} \qquad<span class='latex-bold'>(D)</span>\ \dfrac{\sqrt{5}}{2} \qquad<span class='latex-bold'>(E)</span>\ \dfrac{3}{2}