MathDB
(PQRS)<= 1/2 (ABCD), quadr. inside a square

Source: 2018 Ecuador Juniors (OMEC) L2 p3

October 24, 2022
geometrysquaregeometric inequalityareas

Problem Statement

Let ABCDABCD be a square. Point P,Q,R,SP, Q, R, S are chosen on the sides ABAB, BCBC, CDCD, DADA, respectively, such that AP+CRABBQ+DSAP + CR \ge AB \ge BQ + DS. Prove that area(PQRS)12area(ABCD)area \,\, (PQRS) \le \frac12 \,\, area \,\, (ABCD) and determine all cases when equality holds.