MathDB
Min/Max of Sequence with Conditions

Source:

January 11, 2009

Problem Statement

Let x1 x_1, x2 x_2, \dots, xn x_n be a sequence of integers such that (i) \minus{}1 \le x_i \le 2, for i \equal{} 1,2,3,\dots,n; (ii) x_1 \plus{} x_2 \plus{} \cdots \plus{} x_n \equal{} 19; and (iii) x_1^2 \plus{} x_2^2 \plus{} \cdots \plus{} x_n^2 \equal{} 99. Let m m and M M be the minimal and maximal possible values of x_1^3 \plus{} x_2^3 \plus{} \cdots \plus{} x_n^3, respectively. Then \frac{M}{m} \equal{} <spanclass=latexbold>(A)</span> 3<spanclass=latexbold>(B)</span> 4<spanclass=latexbold>(C)</span> 5<spanclass=latexbold>(D)</span> 6<spanclass=latexbold>(E)</span> 7 <span class='latex-bold'>(A)</span>\ 3\qquad <span class='latex-bold'>(B)</span>\ 4\qquad <span class='latex-bold'>(C)</span>\ 5\qquad <span class='latex-bold'>(D)</span>\ 6\qquad <span class='latex-bold'>(E)</span>\ 7