Cubes and Planes
Source: 2018 AMC 8 #24
November 20, 2018
geometry3D geometryratioAMC 82018 AMC 8
Problem Statement
In the cube with opposite vertices and and are the midpoints of edges and respectively. Let be the ratio of the area of the cross-section to the area of one of the faces of the cube. What is [asy]
size(6cm);
pair A,B,C,D,EE,F,G,H,I,J;
C = (0,0);
B = (-1,1);
D = (2,0.5);
A = B+D;
G = (0,2);
F = B+G;
H = G+D;
EE = G+B+D;
I = (D+H)/2; J = (B+F)/2;
filldraw(C--I--EE--J--cycle,lightgray,black);
draw(C--D--H--EE--F--B--cycle);
draw(G--F--G--C--G--H);
draw(A--B,dashed); draw(A--EE,dashed); draw(A--D,dashed);
dot(A); dot(B); dot(C); dot(D); dot(EE); dot(F); dot(G); dot(H); dot(I); dot(J);
label("",A,E);
label("",B,W);
label("",C,S);
label("",D,E);
label("",EE,N);
label("",F,W);
label("",G,N);
label("",H,E);
label("",I,E);
label("",J,W);
[/asy]