MathDB
Cubes and Planes

Source: 2018 AMC 8 #24

November 20, 2018
geometry3D geometryratioAMC 82018 AMC 8

Problem Statement

In the cube ABCDEFGHABCDEFGH with opposite vertices CC and E,E, JJ and II are the midpoints of edges FB\overline{FB} and HD,\overline{HD}, respectively. Let RR be the ratio of the area of the cross-section EJCIEJCI to the area of one of the faces of the cube. What is R2?R^2?
[asy] size(6cm); pair A,B,C,D,EE,F,G,H,I,J; C = (0,0); B = (-1,1); D = (2,0.5); A = B+D; G = (0,2); F = B+G; H = G+D; EE = G+B+D; I = (D+H)/2; J = (B+F)/2; filldraw(C--I--EE--J--cycle,lightgray,black); draw(C--D--H--EE--F--B--cycle); draw(G--F--G--C--G--H); draw(A--B,dashed); draw(A--EE,dashed); draw(A--D,dashed); dot(A); dot(B); dot(C); dot(D); dot(EE); dot(F); dot(G); dot(H); dot(I); dot(J); label("AA",A,E); label("BB",B,W); label("CC",C,S); label("DD",D,E); label("EE",EE,N); label("FF",F,W); label("GG",G,N); label("HH",H,E); label("II",I,E); label("JJ",J,W); [/asy]
<spanclass=latexbold>(A)</span>54<spanclass=latexbold>(B)</span>43<spanclass=latexbold>(C)</span>32<spanclass=latexbold>(D)</span>2516<spanclass=latexbold>(E)</span>94<span class='latex-bold'>(A) </span> \frac{5}{4} \qquad <span class='latex-bold'>(B) </span> \frac{4}{3} \qquad <span class='latex-bold'>(C) </span> \frac{3}{2} \qquad <span class='latex-bold'>(D) </span> \frac{25}{16} \qquad <span class='latex-bold'>(E) </span> \frac{9}{4}