MathDB
(\sqrt{a}+\sqrt{b})/2)^2 <=(a+\sqrt[3] {a^2b}+\sqrt[3] {ab^2}+b)/4 <=

Source: Austrian Polish 1993 APMC

April 26, 2020
inequalitiesalgebra

Problem Statement

If a,b0a,b \ge 0 are real numbers, prove the inequality (a+b2)2a+a2b3+ab23+b4a+ab+b3(a2/3+b2/32)3\left(\frac{\sqrt{a}+\sqrt{b}}{2}\right)^2\leq\frac{a+\sqrt[3] {a^2b}+\sqrt[3] {ab^2}+b}{4}\leq\frac{a+\sqrt{ab}+b}{3} \leq \sqrt{\left(\frac{a^{2/3}+b^{2/3}}{2}\right)^{3}} For each of the inequalities, find the cases of equality.